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Abstract: 

One leading cause of perinatal morbidity and mortality is intrauterine growth restriction 

(IUGR). Several causes for IUGR have been proposed, e.g. cytotrophoblasts with 

dysfunctional cell fusion capabilities. Envelope genes of the human endogenous retrovirus 

(HERV)-W (Syncytin-1), -FRD (Syncytin-2) and –P(b) have fusogenic properties, whereas 

envelope genes of HERV-R, -V1 and -V2 have putative placental functions. All six HERV 

envelope genes and three known cellular receptors were analysed for expression in human 

control and IUGR placentae (n=38) and in cultured cytotrophoblasts from control and IUGR 

(n=8) placentae. All envelope genes demonstrated down regulation in IUGR compared to 

control placentae tissues, which were confirmed with cultured cytotrophoblasts. Examination 

of the Syncytin-1 and Syncytin-2 receptors ASCT-1/-2 and MFSD2 showed that MFSD2 was 

significantly lower expressed in IUGR than in control placentae and cytotrophoblasts. A 

reduction of Syncytin-1 protein expression was confirmed for IUGR placentae with 

immunoblotting and paraffin tissue sections. Embedded placental IUGR tissues showed an 

overall disorganized syncytiotrophoblast layer with fewer nuclei. Cytotrophoblasts from 

IUGR placentae demonstrated a lower cell fusion index and nuclei per syncytiotrophoblast in 

vitro. Fusogenic and non-fusogenic HERV envelope genes are dysregulated in IUGR 

placentae and may contribute to the etiology of growth restriction in utero. 
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Introduction: 

The human placenta represents a temporary organ where cell fusions or syncytia are 

found. During day 6-11 at the time of human blastocyst implantation villous cytotrophoblasts 

(CT) fuse to a multinuclear syncytiotrophoblast (SCT), which is then followed by fusion of 

villous CT into the established SCT for enlargement and maintenance [1]. It is known that 

low oxygen levels play a role during placentogenesis of the 1st trimester. However, after the 

removal of the extravillous trophoblast plugs, which block the spiral arteries, the SCT 

becomes in direct contact with the normal oxygenated blood from the mother [2, 3]. This 

specialized SCT functions as the primary feto-maternal interface or barrier essential for 

nutrient, gas and waste exchange [4]. Intrauterine growth restriction (IUGR) occurs with an 

incidence from 4 to 7% live births and remains one major perinatal problem, causing 

morbidity and mortality of mother and fetus [5, 6]. It is widely accepted that next to 

infections, maternal diseases and chromosomal abnormalities, a lack of nutrients and oxygen 

could lead to IUGR, as well as impaired fetal-placental angiogenesis [7, 8]. Previously, the 

measurement of chorionic villi surface areas demonstrated lower values for IUGR (~8.2 m2) 

compared to control placentae (~10 m2), resulting in a smaller interface between maternal and 

fetal tissues [9]. In addition, IUGR placentae showed an abnormal cellular development of 

trophoblasts, like lower amounts of CT and more apoptotic SCT [9-11].  

 Human endogenous retroviruses (HERVs) comprise approximately 8% of the human 

genome. HERV sequences have homologies to known retroviruses and originated from 

infections of germ cell lines followed by recombinations, insertions, mutations and deletions 

within the host DNA. Over 30,000 HERV elements have been grouped into more than 80 

families according to sequence homologies [12, 13]. The envelope (env) gene of HERV-W 

(chromosome 7q21.2), called Syncytin-1 was the first to be recognized as essential for 

mediating trophoblast cell fusion events [14, 15]. Interestingly, using cell culture with various 

oxygen levels from 1-20% Syncytin-1 gene expression can be regulated [16-20]. 
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 Furthermore, the Na+-dependent transporters for neutral amino acids ASCT-2 (SLC1A5) and 

ASCT-1 (SLC1A4) were also demonstrated as essential for cell fusions, probably by serving 

as receptors for Syncytin-1 [21]. Recently, two more HERV env genes capable of inducing 

cell fusions have been identified: HERV-FRD or Syncytin-2 on chromosome 6p24.1 and 

HERV-P(b) at 14q32.12, which we presently propose to name Syncytin-3 due to its cell 

fusion ability (Fig. 1A, supplemental Table 1A).  

 In addition to placenta, syncytial cells were also found in human endometrial and 

breast carcinomas, with Syncytin-1 over expressed [22, 23]. Furthermore, a role for Syncytin-

1 mediating fusions was demonstrated for both human endometrial and breast carcinoma cells 

in vitro. Cancer cell fusions in vitro and in vivo have also been demonstrated to occur between 

different cell types, e.g. tumor cells and bone marrow-derived cells where these fusions have 

been implicated in metastasis [24]. Syncytin-2 was detected in villous CT and shown  

to induce cell fusions using an in vitro cell culture assay with human cancer cells similar to 

Syncytin-1 [25, 26]. A placenta-specific receptor for Syncytin-2 was identified as a major 

facilitator superfamily domain containing 2 (MFSD2) gene, which belongs to the large family 

of putative carbohydrate transporters. MFSD2 was specifically expressed in human placentae 

and mainly in SCT [27]. The more widely expressed Syncytin-3 was also found fusogenic in 

cell culture, even with other species than humans [28]. A receptor for Syncytin-3 has not been 

identified to date.  

 In addition to the fusogenic Syncytin-1,-2 and -3, env genes other HERV env genes 

were found expressed in human placentae. For example, HERV-R or ERV3 (endogenous 

retroviral sequence 3) mRNAs are abundant in human placental chorion [29] but also 

expressed in normal and malignant tissues [30]. Although the evolutionary conservation of 

the envERV3 implies a favourable function, the loss of envERV3 in new world primates and 

gorillas and the detection of a stop-codon polymorphism in humans leading to a truncated env 

protein have been proposed against an essential role for survival and reproduction [31, 32]. 
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Recently, HERV-V1 and HERV-V2 along with their respective env genes envV1 and envV2 

were located on chromosome 19q13.41 with only ~34 kb between both HERVs [33]. Both 

envV1 and envV2 were found highly identical with variations only at the C-terminus. Recent 

expression analysis of envV1 / V2 demonstrated exclusive expression in the placenta [28, 33].  

The aim of this study was to determine if different expression levels of the three 

fusogenic Syncytin genes and the receptors ASCT-1, -2 and MFSD2, as well as envERV3, 

envV1 and envV2 contribute to the placental dysfunction in IUGR. In addition, isolated and 

cultivated CT from control and IUGR placentae were used to determine 1) if the same HERV 

env expression levels compared to primary placentas and 2) if dysregulated cell fusion 

occurred using normal cell culture conditions.  

 

Materials and methods: 

Patient and tissue collective 

The diagnosis of IUGR was based on elevated pulsatility index (PI) in the uterine arteries 

and/or early diastolic notches in both uterine arteries, elevated PI in umbilical arteries, 

elevated head/abdomen ratio, reduced amniotic fluid index and longitudinal measurements of 

reduced growth of the fetal abdominal circumference (< 5mm/week) and/or cross sectional 

records of the estimated fetal weight below the 10th-percentile [34]. With the approval of the 

Ethics Committee at the University of Erlangen-Nuremberg a total of 46 human placentae 

were obtained from 23 controls and 23 patients solely with IUGR and no other disease, like 

cancer, diabetes, preeclampsia or HELLP-syndrome, after elective Caesarean section. The 

clinical data of the control cohort and patients with IUGR are presented in Table 1. A biopsy 

was obtained near the cord from every placentae. Placental tissues for RNA and protein 

analyses (19 tissues from control and 19 from IUGR placentae) were snap frozen in liquid 

nitrogen and stored at -80°C until further use. In addition, from the 19 control and 19 IUGR 

placentas, 6 probes of 3 control and 3 IUGR placentae were formalin fixed for 
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immunohistochemistry analyses (see below). Besides the 19 control and 19 IUGR placentae, 

4 additional control and 4 IUGR placentae were used for CT fractionations (see below), thus 

the total number of control placentae was 23 and of IUGR placentae was 23 (Table 1).  

 

RNA extraction and cDNA synthesis 

Total RNA was extracted from 50-100 mg of frozen placental tissues according to Strick et al. 

and Langbein et al. [23, 35]. For expression analysis, RNA was pre-treated with DNase I 

(Sigma-Aldrich, Germany) and cDNA was generated with the High Capacity cDNA Kit 

[Applied Biosystems (ABI), Germany] in a thermal cycler (ABI2720) for 2 hr at 37°C.  

 

Semi and absolute quantitative real time PCR (qPCR)  

Supplemental Table 1A shows specific primers of the env genes Syncytin-1, -2 and -3, 

envERV3, envV1 and envV2 used for cloning PCR fragments into TopoTA vectors 

(Invitrogen). The DNA of the cloned env genes with known copy numbers was used as 

external standard to generate a standard curve with the cycle threshold (CT) value against the 

log of amount of standard (ABI7300). qPCR with specific primers were then used to 

quantitate all env genes with SYBR-green technology (supplemental Table 1A). 

Amplification of 18s-rRNA (TF 5’ GCAATTATTCCCCATGAACG and BR 5’ 

GGCCTCACTAAACCATCCAA) and β-actin (TF 5’ TCACCATTGGCAATGAGCGG and 

5’ BR: GATGTCCACGTCACACTT CAT) were used for normalization of the different 

samples. Importantly, a similar PCR efficiency (over 97 %) between all env genes was needed 

in order for comparison. Similar standard curves of all env genes were obtained for the 

SYBR-green based qPCR with the following slopes and calculations (supplemental Table 

1B). The analysis of the Syncytin-1 and -2 receptors was performed using semiquantitative 

TaqMan-assays (Applied Biosystems) for ASCT-1 (exon 7-8), ASCT-2 (exon 1-2) and 
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MFSD2 (exon 13-14). Co-amplification of 18s-rRNA (Applied Biosystems) and one control 

cDNA as internal control were used for a standard curve in semi-quantitation analysis.  

 

Immunoblot Analysis.  

Proteins were isolated from frozen placenta tissues according to Strick et al. [23]. Fifteen µg 

of cell lysates were resolved on a 7.5-12.5% acrylamide gradient SDS-gel, transferred to a 

PVDF membrane using a CAPS-transfer buffer according to Strick et al. [23] and incubated 

with a Syncytin-1 SU-specific monoclonal antibody (clone 4F10) (1:1000) (Abnova, Tebu-

Bio, Offenbach, Germany). A secondary peroxidase labelled monoclonal antibody was used 

for detection (1:1000) (Sigma-Aldrich). Blots were stripped and incubated with β-actin 

monoclonal antibody for normalization (1:1000) (Cell Signaling, Frankfurt, Germany). In 

addition, duplicate SDS-gels were stained after electrophoresis with Coomassie Brilliant blue 

R (Sigma-Aldrich) to verify overall protein content per placenta lysate. Percent differences of 

protein and normalizations were performed using ImageJ®. 

 

Fractionation and cultivation of cytotrophoblasts 

Human CT were isolated using the well established trypsin-DNase-dispase/percoll method 

[20, 35-37] from 4 independent control and 4 IUGR placentae and cryopreserved in liquid 

nitrogen. We analyzed the specific percoll gradient cell fraction (1.048 to 1.062 g/ml density) 

with the following results: 1) CT viability was routinely >85% using trypan blue exclusion; 2) 

Using multiple FACS (FACSCalibur, BD Biosciences) analyses of each of the four control 

and four IUGR fractionated CT met specific requirements. For example, we determined that 

10-13.3 % of the fractions were HLA-A,B,C+ (mononuclear blood cells, fibroblasts and other 

rare cell types) and 86.6-90% HLA-A,B,C negative (suppl. Fig. 1A). In addition, fractionated 

cells were 95.5-97.6 % CK7+ (many epithelial cells) and 2.4-4.5% CD45+ (mononuclear 

blood cells) [CK7/PE (clone 5F282), Santa Cruz Bio., Heidelberg, Germany (1:20); HLA-
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A,B,C/PE (cloneW6/32), Biolegend, Uithoorn, Netherlands (1:10); CD45/FITC, Miltenyi 

Biotec, Berg. Gladbach, Germany (1:10)] (suppl. Fig. 1B). Therefore, 86.6-90% of the 

fractionated cells were trophoblastic cells and 10-13.3 % non-trophoblastic. A further FACS 

analysis using propidium iodide (Sigma) (50µg/ml), specific for DNA content, resulted in 6.8-

8.5% multinucleated fractured syncytial fragments. On the other hand an estimation of 

fractured syncytial fragments with one or two nuclei could not be performed (supplemental 

Fig. 1C). However, all fractured syncytial cellular fragments, non-adherent cells and debris 

were removed initially after 4 hr and then every 24 hr with a media change [38]; 3) following 

the seeding of 300,000 viable cells/cm2 (trypan blue negative) in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10% fetal calf serum, 20 mM Hepes, 2 mM L-

glutamine, penicillin/streptomycin (100 U/ml, 100 µg/ml), and non-essential amino acids in a 

humidified 5% CO2 environment at 37°C CT were cultivated for 3 days. After 3 days of 

culturing CT were routinely assessed by immunohistochemistry for CK7 and Vimentin (non-

epithelial cells) [35]. In general control and IUGR CT were approximately 95% CK7+ and up 

to 5% Vimentin+. 

 
 
Assessment of fused cells by May-Gruenwald-Giemsa and membrane staining 

CT cultures at day 3 were analysed microscopically for cell fusions using two methodologies: 

1) May-Gruenwald-Giemsa staining (Sigma-Aldrich) and 2) wheat germ agglutinin (Alexa 

594) plasma membrane stain along with the nuclear stain Hoechst 33342 (Molecular Probes, 

Karlsruhe, Germany) according to Strick et al. and Langbein et al. [23, 35]. Eight different 

visual fields from each CT culture from control (n=4) and IUGR placentae (n=4) were 

analyzed to determine the fusion index (FI) and the number of nuclei/SCT by two 

independent researchers. The fusion-index (FI) was calculated according to the formula: FI = 

[(N-S) / T] x 100; where N represented the amount of nuclei in SCT, S the quantity of SCT 

and T the total nuclei. Analysis was performed by microscopy (Zeiss, IM35) with different 
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objective lenses (10x Neofluor 10/0.30 and 20x LWD 160/0-2). Images were acquired with a 

digital camera (Canon EOS400D) and processed with computer software (Photoshop CS3). 

The measurement of secreted human chorionic gonadotropin (β-hCG) as a biochemical 

differentiation and fusion marker was performed with an Immulite2000 (DPC) [39, 40]. 

 

Hematoxylin/eosin staining of paraffin embedded placentae   

Three control and 3 IUGR placentae probes were fixed in 10% formalin for 1 hr, washed 

several times with ethanol (70-100%) for 5.5 hr and xylol (2.5 hr) and embedded into paraffin 

(2 hr). Hematoxylin/Eosin staining was performed by automation (Gemini, Shandon 

Varistain) following deparaffinization with xylol for 10 min, washed with ethanol and water 

and then stained with hematoxylin gill #3 (3 min) and eosin (20 sec). Eighteen microscopic 

regions with 2-3 villi (more than 36 villi per placenta) were analyzed as nuclei per mm. The 

calculation of nuclei per SCT in longitudinal cuts of anchoring and floating villi of control 

and IUGR placentae was performed for a total of 108 villi for control and 108 villi for IUGR.  

 

Fast Red-Haematoxylin staining (Zytomed Systems, Berlin, Germany) 

Placentae probes were deparaffinised with xylol and rehydrated to 70% ethanol, washed in 

0.1M Tris-HCl pH: 8.6 and pre-treated with Target Retrieval Solution (pH: 9) (Dako, 

Hamburg, Germany). Probes were blocked in Blocking Solution (Reagent I) for 5 min and 

incubated over night at RT with 1:100 diluted Syncytin-1 SU-specific polyclonal antibody 

(Biozol, Germany). After washes with Tris-HCl pH: 8.6, probes were blocked with PostBlock 

(Reagent II) for 30 min at RT (room temperature), treated with two drops of Brij® and 

incubated with AP-Polymer (Reagent III) for 30 min at RT. Probes were stained with filtered 

Fast Red staining solution (2 mg Naphtol-AS-MX-Phosphat, 0.2 ml N,N Dimethylformamide, 

9.8 ml 0.1M Tris-HCl pH: 8.6, 10µl 1M Levamisole for inhibition of endogenous phosphatase 

activity, 10 mg Fast Red) for 20 min at RT (Zytomed Systems, Berlin, Germany). Probes 
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were washed briefly under floating water and counterstained with a Hämalaun-Mayer solution 

for 10 seconds. The fluorescent analyses were performed with filters at 670nm. Probe 

analyses and image acquisition were performed as described in the May-Gruenwald-Giemsa 

and fluorescent membrane staining protocols. 

 

Statistical analysis  

The nonparametric Mann-Whitney test for independent samples was performed using SPSS 

16.0.2. (SPSS, Inc.). For all tests a P<0.05 was considered as statistically significant. For each 

mean value, a standard error of the mean (s.e.m.) was calculated using SPSS 16.0.2. 

 

Results: 

As expected the birth and placenta weight of IUGR newborns showed a significant 

difference as compared to the control cohort. Both cohorts had similar ages, gravidity and 

parity, however the glucose concentration of IUGR newborn was significantly lower (Table 

1). Comparing the absolute expression of env genes by qPCR demonstrated that Syncytin-1 

was the highest expressed in control placentae in the following order: Syncytin-1 > envERV3 

> Syncytin-2 > envV2 > envV1 > Syncytin-3. Importantly, the expression levels were similar 

after normalization for 18s-rRNA (Table 2 and suppl. Fig. 2) and β-actin (data not shown).  

Regarding only the fusogenic env genes (Syncytin-1, -2, -3) Syncytin-1 expression 

was 10-fold and 145-fold higher than Syncytin-2 and Syncytin-3 levels, respectively (Table 

2A, suppl. Fig. 2). In IUGR placentae not only the order of expression was changed for 

envV1 and envV2 compared to control primary tissues (Syncytin-1 > envERV3 > Syncytin-2 

> envV1 > envV2 > Syncytin-3), but a significant lower expression for Syncytin-1 (2.1-fold), 

Syncytin-2 (4.7-fold), envV1 (2-fold) and envV2 (6-fold) was found (Table 2A). In general, 

all three fusogenic env genes together were 2.2-fold lower expressed in IUGR placentae 

(686.84 to 308.53 molecules / ng, P: 0.000036) and all six env genes 1.7-fold lower (957.75 to 
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560.17 molecules/ng, P: 0.012959) compared to control placentae (Table 2A, suppl. Fig. 2). 

Furthermore, a lowered protein expression of Syncytin-1 in IUGR placental tissue (n=4) 

compared to control placenta (n=4) was confirmed with immunoblot analysis using a 

Syncytin-1 SU-specific monoclonal antibody (Fig. 1B). Control placentae showed more 

processed Syncytin-1 SU-protein (gp50) and the Syncytin-1 precursor protein (gPr66) than 

the IUGR placenta extracts. Syncytin-1 protein (gp50) levels following normalization against 

β-actin and core histones resulted in 65.03% less protein among all IUGR placentae compared 

to controls (Fig. 1B). 

Fractionated CT from control (n=4) and IUGR placentae (n=4) were cultured for 3 

days and then analyzed for HERV env expression. Control placental CT demonstrated that 

Syncytin-1 and envERV3 were the highest expressed among all env genes in the following 

hierarchy: Syncytin-1 > envErv3 > envV1 > envV2 > Syncytin-2 > Syncytin-3 [Table 2A, 

suppl. Fig. 2 with 18s-rRNA and β-actin (data not shown)]. Comparing expression levels to 

primary control tissues showed differences. For example, Syncytin-1 and envERV expression 

was 4.5-fold and 1.5-fold higher in cultured control CT compared to control placenta, 

respectively (Table 2A). In addition, control CT had higher envV1 (28.5-fold) and envV2 

(9.6-fold) levels compared to control placentae. Syncytin-2 and -3 CT expression values were 

comparable to primary control tissues (Table 2A, suppl. Fig. 2).  

Although, the hierarchy of env gene expression in isolated CT from IUGR placentae 

was almost similar to CT from control placentae (Syncytin-1 > envErv3 > envV1 > envV2 > 

Syncytin-3 >Syncytin-2), env expression values were lower; for example, Syncytin-1 and 

envErv3 were 12.88 and 7.56-fold lower compared to control CT, respectively. Except for 

Syncytin-3 the env expression differences between control and IUGR fractionated CT were 

similar but more dramatically decreased than between control and IUGR primary tissues. 

(Table 2A). Syncytin-1, -2, -3 together were 12.8-fold lower expressed in IUGR CT (2859.25 
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to 223.00 molecules / ng, P: 0.020921) and all six env genes 12.7-fold lower (4053.85 to 

318.55 molecules/ng, P: 0.020921) compared to control CT (Table 2A).  

Analyzing the ratios of the Syncytin-1 receptors ASCT-1 and -2 were not significantly 

different between control and IUGR placentae, however the Syncytin-2 receptor MFSD2 was 

significantly 2.7-fold down regulated in IUGR placentae (Table 2B, suppl. Fig. 2). In contrast, 

in isolated IUGR CT cultivated for 3 days, a significant higher expression level was found for 

ASCT-1 (9.8-fold) and ASCT-2 (2.2-fold) than in control CT (Table 2B). Similar to primary 

placentae the Syncytin-2 receptor MFSD2 demonstrated a significant reduction of expression 

in IUGR CT compared to control CT (Table 2B, suppl. Fig. 2). In addition, β-hCG levels as a 

marker for CT differentiation were determined from each CT culture supernatant after 3d and 

revealed 80.2-fold higher concentrations for control CT when compared to IUGR CT. 

Comparing the mean fusion index of isolated CT from control placentae (n=4) and IUGR 

placentae (n=4) showed a significant ~20% lower fusion level in IUGR CT (83.16% to 

63.24%). A simultaneous analysis of the mean number of nuclei per SCT after 3 day cultures 

demonstrated a non-significant lower nuclei number for fractionated CT from IUGR 

placentae (n=4) (8.55 nuclei / SCT) compared to fractionated CT from control placentae (n=4) 

(10.7 nuclei / SCT) (Table 3 and Fig. 2).  

A comparative analysis of paraffin embedded placentae from control and IUGR 

patients revealed similar results to isolated and cultivated CT concerning the SCT formation 

and nuclei / SCT amount. Nuclei of SCT in anchoring and floating villi from IUGR placentae 

had a more disorganized appearance than control placentae, where nuclei looked more like a 

“string of beads” (Fig. 3). A calculation of nuclei per SCT in 36 villi total per placentae 

revealed that IUGR placentae (n=3) had significantly 25.6 % less nuclei present than control 

placentae (n=3) (control: 51.5 +/- 1.66 nuclei / mm and IUGR 38.3 +/- 1.16 nuclei / mm; P: 

0.00000003) (Fig. 3).  A further analysis of deparaffinised probes from control and IUGR 

placentae for Syncytin-1 expression and villi characteristics was performed with a Syncytin-1 
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polyclonal antibody (SU-specific) and Fast Red Haematoxylin (Fig. 4). A comparison of 

Syncytin-1 expression revealed an overall stronger signal in the control placentae compared to 

IUGR placentae, supporting our Immunoblot Syncytin-1 analysis (Fig. 1B). Additionally, 

Syncytin-1 showed an intense membrane staining at the villi and appeared more concentrated 

at the apical site of the SCT.   

 

Discussion:  

Gene expression analysis comparing six env genes in control term placentae 

demonstrated Syncytin-1 with the highest and Syncytin-3 with the lowest expression levels 

(Table 2A). Syncytin-1, -2 and -3 genes were previously demonstrated to induce cell fusions 

in vitro [15, 25, 28, 41]. Although similar in function this study demonstrated great variations 

between their expression levels in primary placental tissues where Syncytin-1 was 10-fold 

higher expressed than Syncytin-2 and 145-fold higher than Syncytin-3. Another study also 

found a lower expression of Syncytin-2 compared to Syncytin-1 in human placenta, but only 

with a ~2.7-fold difference [42]. The differences in expression of the three fusing env genes 

after 3 days cultivation of control CT were more dramatic than in control placental tissue 

where Syncytin-1 was 97.5-fold higher expressed than Syncytin-2 and 807.7-fold more than 

Syncytin-3, and which could be explained by fractionation of CT.  

As shown with Syncytin-1 transfections, Syncytin-1 antibodies and specific siRNAs, 

Syncytin-1 is considered the cardinal gene for cell fusions [15, 22, 23, 43, 44]. Syncytin-1 

was detected in villous and extravillous CT and SCT, but Syncytin-2 was only detected in 

villous CT by immunohistochemistry, supporting that Syncytin-2 plays a possible role in the 

initial part of CT fusion [26, 41]. The different expression pattern of Syncytin-2, but also of 

its receptor MFSD2, which is specifically expressed in trophoblasts support their role in the 

CT to SCT-fusion or with the in-fusion process maintaining the organization of the 

syncytiotrophoblast [1, 27]. Syncytin-3 was also detected in other tissues than placentae and 
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to date it is unclear, which role Syncytin-3 plays in CT fusions and which placental cells 

express Syncytin-3. However, in vitro experiments showed that villous CT and possibly SCT 

express Syncytin-3 [28]. All of the above support that the different expression levels of the 

three Syncytin genes points to distinct functions during the cell fusion process in time, cell 

type or localization of the placenta. 

In previous studies, Syncytin-1 expression was found decreased in placentae from 

preeclampsia and HELLP patients associated with or without IUGR [17, 35, 45]. In this 

investigation we determined significantly lower Syncytin-1 levels at the RNA and protein 

levels solely in IUGR placentae compared to control placentae (Table 2A and Fig. 1B+4). 

Importantly Syncytin-2 expression levels were also decreased in IUGR placentae. Calculating 

the absolute number of all three fusogenic Syncytins, a significantly 2.2-fold or 12.8-fold 

more molecules of Syncytin-1/-2/-3 per ng of total cDNA were found in control placentae 

compared to IUGR placentae and control CT compared to IUGR CT, respectively (Table 2A). 

These differences in fusogenic Syncytins could be linked to IUGR etiology. For example, 

lower expression of Syncytin-1 and -2 in IUGR placentae and CT could be the cause for the 

significantly lower cell fusion index in IUGR CT (Table 3). Although substantially reduced 

levels of Syncytin-1 and -2 in IUGR CT were detected, we observed only a ~20% decrease of 

the IUGR CT cell fusion index and nuclei/SCT along with an equivalent 25.6% lower nuclei 

amount in paraffin embedded IUGR placentae (Table 3, Fig. 2,3). In addition, the more 

disorganized appearance of the SCT layer in the paraffin embedded IUGR villi could 

ultimately contribute to an aberrant nutrient-gas exchange at the IUGR maternal-fetal 

membrane. These results demonstrate that IUGR CT can still mediate cell fusions (index of 

63.24%) despite greatly reduced amounts of fusogenic Syncytin-1 and -2. It is important to 

note that Syncytin-3 concentrations remained unchanged between control and IUGR 

placentae and CT, therefore seem not to play a role in the molecular etiology of IUGR. In 

addition to fusogenic Syncytins and their receptors several other mechanisms and proteins 
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have been proposed to be involved in CT fusion like: 1) a phosphatidylserine flip [46], 2) 

connexin 43 [47], 3) cadherin 11 [48], 4) CD98 and the ligand galectin 3 [49], and 5) caspase 

8, which plays a role in a small time window just short before cell fusion [50, 51]. 

The regulatory mechanisms of Syncytin-1 and Syncytin-2 gene expression are still 

under investigation. Many regulatory elements critical for the transcriptional regulation have 

been proposed for HERV-W, e.g. the CCAAT motif and the octamer protein binding site of 

the promoter region in the 5´ long terminal repeat (LTR) [52]. Upstream of the 5´LTR are 

binding sites for the transcription factor Glia Cell Missing a (GCMa) which enhances 

Syncytin-1 expression as demonstrated in the choriocarcinoma cell lines BeWo and JEG-3 

[53]. Recently, an estrogen response element was identified in the 5’LTR of HERV-W, which 

was important for the upregulation of Syncytin-1 after estradiol treatment [23]. On the other 

hand mutations of the ecdysone receptor response element enhance the basal promoter 

activity, which could be a silencer for Syncytin-1 transcription [52]. It has also been 

demonstrated that Syncytin-1 transcription was regulated by CpG-methylation in the 5’ LTR 

of HERV-W [54]. Therefore, it is possible that in IUGR placentae hypermethylation of CpGs 

in the LTR of HERV-W could reduce Syncytin-1 expression, a regulation which could also 

involve other HERV genes (Ruebner et al., manuscript in preparation). Hypoxia is also a 

known regulator of Syncytin-1 expression and β-hCG secretion [20]. In this report we 

determined that cultured control and IUGR CT at ~20% oxygen showed differences in HERV 

env gene expression levels and which were also comparable to levels in their respective 

primary placentae (controls and IUGR).  

In addition to the three fusogenic Syncytins, the env genes of HERV-R (envERV3), 

HERV-V1 and –V2 were analysed in placentae and isolated CT. EnvERV3 presented the 

second highest expression level in control placentae and control CT. EnvERV3 expression 

levels remained similar in control and IUGR placentae, but a significantly lower expression 

was detected in IUGR CT compared to control CT (7.5-fold lower, P: 0.020921) (Table 2A). 
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In the choriocarcinoma cell line BeWo, Forskolin treatment up-regulated envERV3 in 

conjunction with ß-hCG and cell fusion [55]. EnvERV3 transfections led to increased cAMP 

levels which in turn also up-regulated ß-hCG [56, 57]. In addition, transfected envERV3 had 

an effect on the cell cycle regulators cyclin B and p21 causing growth inhibition. Taken 

together envERV3 was proposed necessary for the final differentiation process of CT cell 

fusion to SCT [55]. Therefore, it is possible that down regulation of envERV3 like Syncytin-1 

could contribute to IUGR, esp. linked with a reduction of both ß-hCG and cell fusion.  

Comparing the expression levels of envV1 and envV2 of control placentae to CT 

fractionated from control placentae an over 28-fold (envV1) and 9-fold (envV2) over 

expression was detected, placing them to the third and fourth highest expression position after 

Syncytin-1 and envERV3 (Table 2A). EnvV1 and envV2 were exclusively detected in 

placentae, they were not fusogenic by in vitro assays [28]. Considering the preservation of 

envV1 and envV2 in evolution, envV2 was shown conserved in all simians, whereas envV1 

was intact in chimpanzee and rhesus macaque [33] and in view of the high expression of 

envV1 and envV2 in cultivated CT, a beneficial role for placentogenesis similar to Syncytin-1 

and -2 can be proposed. 

Regarding ASCT-1 and -2, the two putative receptors of Syncytin-1, no significant 

differences in expression between control and IUGR placentae were found. The expression 

analysis of placentae from patients with preeclampsia also showed no alteration for ASCT-2 

[17]. In contrast to the placental tissues, a significant up-regulation of ASCT-1 and -2 

expressions was found in cultivated IUGR CT compared to control CT (Table 2B). The 

increase of the receptor expression in isolated IUGR CT could point to a compensation for the 

lower Syncytin-1 expression. Glucose is transported by the two main families GLUT 

(facilitated-diffusion glucose transporters) and SGLT (sodium-dependent glucose 

transporters), where the transporter GLUT-1 was found not reduced in IUGR SCT [58]. On 

the other hand, increased or decreased glucose consumption has been discussed regarding 
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IUGR placentae, as well as an altered glycolytic pathway [59]. Interestingly, we determined a 

significant 1.5-fold reduced serum glucose concentration in IUGR compared to control 

newborns (Table 1). In addition, the placenta-specific receptor for Syncytin-2 MFSD2 was 

significantly downregulated in IUGR placentae and CT (Table 2B). MFSD2 is a putative 

placental carbohydrate transporter and the significant down regulation found in IUGR 

placentae and CT could be responsible for the significant lower glucose content in the 

newborn IUGR children (Table 2B). In conclusion, understanding the developmental process 

of placentogenesis, esp. the role of HERV env in fusion and other aspects will be important 

for unravelling pathological processes of the placenta. 
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Figure legends:  
 

Fig. 1: A: Comparison of Syncytin-1, -2 and -3 with its SU and TM units divided by the 

putative protease site recognized by the consensus site RXR/KR or RR/KXR (X represents 

any amino acid). Numbers represent amino acid positions; with the N-terminal signal peptide, 

the immunosuppressive (dashed), the transmembrane (dark) and cytoplasmatic domain 

(squares). In addition, the putative disulfide sites (CW/YXC, CX6CC) are indicated. B: 

Fifteen µg of cell lysates from 4 control and 4 IUGR placentae were analysed on a 7.5-12.5% 

gradient SDS-PAGE and hybridized with a SU-specific Syncytin-1 (gp50SU) and β-actin 

antibodies. (*) represent the Syncytin-1 precursor (gPr66-env) proteins. In addition, the SDS 

gel was stained with Coomassie to detect core histones for equal protein loading. Left 

numbers indicate the sizes in kilo Dalton (kD).  

 

Fig. 2: Fractionated CT from control and IUGR placentae were cultivated for 3 days and 

analysed for spontaneous cell-cell fusion (SCT) by May-Grunwald-Giemsa (MGG) staining 

and microscopy. Note the different amounts of nuclei per SCT. In addition, CT were stained 

with a specific cell membrane stain (MS) of wheat germ agglutinin with Alexa 594 and 

nuclear Hoechst 33342 stain. Bars represent 50µm.  

 

Fig. 3: Paraffin embedded placentae from control and IUGR patients were stained with 

hematoxylin and eosin. A) Example of villi of a control placenta with the SCT layer. 

Rectangle displays 500µm in length was used for counting SCT nuclei. B) and D) Zoom of 

control SCT and C) and E) Zoom of IUGR SCT. Note the different nuclei organization and 

quantity (arrows). Bars represent 100µm.  
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Fig. 4 A-C: Paraffin embedded placentae from control and IUGR patients were deparaffinised 

and incubated with Syncytin-1 polyclonal antibody against the SU-domain, stained with Fast 

Red-Haematoxylin and visualized with light microscopy (LM) and fluorescence microscopy 

(FM) at 670nm. Note the decreased Syncytin-1 protein signal in IUGR tissue. Bars represent 

50µm (A,B) and 100µm (C). 

 

 

Supplemental Fig. 1: FACS analysis of fractionated placental cell populations from Percoll 

gradient (1.048 to 1.062 g/ml density) from control (A1, B1) and two IUGR placentae (A2+3, 

B2+3) used for Tables 1-3 and Fig.2 in this study. 50,000 fractionated cells were incubated 

with anti-HLA-A,B,C-PE (A1-3), as well as with anti-CK7-PE and anti-CD45-FITC (B1-3) 

and sorted. Percentages give the overall positive staining, e.g. 97.63% CK7+ and 2.37% 

CD45+ for control cell population (B1). C1-C3: FACS analysis of fractionated cell 

populations from control (C1) and two IUGR placentae (C2+3). 50,000 fractionated cells 

were incubated with PI (50µg/ml) and sorted for nuclei content. The CT from control 

placentae comprised of 74.15% mononucleated, 19.01% dinucleated and 6.84% 

multinucleated cells (C1). Note the similar sorted cell populations for both control and IUGR 

placentae. 

 

Supplemental Fig. 2: Bar graphs representing Table 2a and 2b. Shown are absolute molecules 

/ ng cDNA calculated by qPCR for the six different HERV env genes and three receptors 

using semiquantitative real time PCR. A: placental tissues from control and IUGR; B: 

fractionated trophoblasts from control and IUGR placentae analyzed at day 3 of culturing. (*) 

significant and (**) highly significant differences. 
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